

SiO2 Configured Cable Assemblies

Tips for designing and documenting accurate, cost effective configured cables for a drop-in fit.

Contents

Section 1 - Manufacturing

An overview of manufacturing methods used to make configured cables.

Section 2 - Documentation

Methods for concise, simple documentation of configured cable designs.

Section 3 - Routing Tips

Designing your cable routing for lower overall cost and ease of installation.

Manufacturing

- Manual or CNC tubing benders provide a rapid, accurate, and low cost method for manufacturing configured cables.
- Following some simple design guidelines can ensure your configuration can be manufactured this way.
- Assemblies that require very tight tolerances, multiple bend radii, non circular bends, or unusual configurations can require higher cost hard tooling.

Manual/CNC Forming

MANUFACTURING

- Produces highly accurate, repeatable configured cable assemblies without the time and expense required to develop custom hard tooling.
- Used in combination with CAD generated inspection templates.
- With a certain degree of planning, even the most demanding applications can put this manufacturing method to good use.

Hard Tooling

MANUFACTURING

Advantages

- Highest accuracy bend fixture doubles as inspection fixture.
- Works for configurations that do not fit CNC bender.
- Can use multiple bend radii on a single cable.
- Can form cables with no straight length between bends.
- Lasts for the life of the configuration.

Disadvantages

- Increased tooling cost.
- Increased engineering time.
- Increased lead time.
- Inflexible configuration changes require a new tool.

Forming Considerations

MANUFACTURING

Do

- Provide a Solidworks Drawing or a table of bend coordinates including a .stp (STEP) file.
 - AutoCAD drawings are acceptable but not preferred.
- Use a single radius size of at least 4X the cable diameter for all bends.
- Make bends lie in a principal plane of the coordinate system when practical.
- Include a straight length of at least 1 cable diameter after the connector and in-between each bend.
- Include a "Phase Adjust" section for phase matched assembles.
- •Contact an Engineer for Pre-Sale configuration design support.

Don't

- Make irregular or non-circular bends.
- Use "Coiled" sections to account for phase changes
- "Fudge" the cable configuration in a manual drawing.
- Use multiple bend radii

Forming Considerations

MANUFACTURING

Bend Radius Consideration

- In general bend radii should be kept to 4X the cable diameter or larger.
- While smaller is possible, there will be a risk of causing a "wrinkle" in the bend area.
- Most wrinkles are cosmetic in nature only and will not have an effect on cable performance.

Inspection Templates

MANUFACTURING

- Cable is somewhat flexible, so light hand pressure is used for inspection purposes.
- Used for both in process and final inspection.

Documentation

- Bend Coordinates
- Tolerance Tube
- Drawing Notes
- Sample Drawing

A configured cable can be concisely defined with minimal effort.

Bend Coordinates

DOCUMENTATION

Start and end points lie at the connector electrical reference plane.

Bend Coordinates

DOCUMENTATION

• Cable configuration can be communicated concisely via a table of bend coordinates plus a few general notes.

BEND NO	L (LENGTH)	R (ROTATION)	A (ANGLE)	BEND RADIUS	STR. LENGTH
1	11.325	0	90	.400	.520
2	9.395	90	78	.400	.209
3	8.411	270	90	.400	.125
4	6.955	180	12	.400	.437
5	2.944	90	12	.400	.682

"Tolerance Tube"

DOCUMENTATION

- Formed cable tolerance is defined by a "Tolerance tube", a specified amount larger than the cable diameter.
- Standard Tolerances: +/-.060 for most configurations.
- Remember that cable is somewhat flexible, not stiff like rebar. Cable will flex during installation to hit clamp locations and avoid other components except on very short runs.

"Tolerance Tube" Example

DOCUMENTATION

 As an example, if the cable diameter is .141", the tolerance tube diameter is calculated using a .060 window as:

Drawing Notes

DOCUMENTATION

- Review your company's standard notes to eliminate any conflicts, and be sure to include the following:
 - Nominal cable size
 - Routing tolerance
 - Standard bend radius at cable centerline
 - (should be at least 4x the cable diameter)
 - Connector types
 - Information to be marked on the cable
 - Marking Method
 - Shrink Tubing
 - Laser ID
 - Paper Tag Marking

Application Information

DOCUMENTATION

- Provide the following information to achieve an optimum cable assembly design:
 - Operating Frequency Range
 - Maximum Insertion Loss Budget
 - VSWR Expectations
 - Phase Matching Requirements
 - Power Handling
 - Environmental Information
 - Ambient Temperature Range
 - Altitude
 - Vibration
 - Other details

Sample Drawing

SHEET

DOCUMENTATION

SCALE

Routing Tips

- Flex section for installation of short cables between fixed components.
- Specifying 180 degree bends.
- Using the standard radius to approximate a very large radius.
- Additional tolerance zone for phase matched cables.

Flex Section

ROUTING TIPS

• Very short runs of cable can be stiff. You may want to include a flex section if you are routing between fixed components.

180 Degree Bends

ROUTING TIPS

- Bends of 180 degrees or more can be difficult to remove from the tooling. Consider adding a straight length of at least a cable diameter between two 90 degree bends.
- If you must specify a 180 degree bend, use two bend coordinates for documentation.

Large Radius Bends

ROUTING TIPS

 Use multiple standard size bends to approximate a large radius, so your cable can be formed on the CNC bender without special tooling.

Phase Adjust Section

ROUTING TIPS

 Variations in cable Vg and connector components can cause variation in electrical length causing phase matched cables to require extra routing tolerances.

> A 4% length tolerance is required for any phase matched design.

• Additional tolerance to be used as a phase matching section should be included near the end connector of the routing.

Here is an example of a "Phase Adjust" section. Any phase matched configuration should include this type of window to allow for cable/connector variance.

Application Support

Contact your Times Regional Applications Engineer for support in designing and specifying your configured cable assemblies:

www.timesmicrowave.com/contact/technical

telephone: 203-949-8400 / 800-TMS-COAX